Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 12382

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Muon spin relaxation in mixed perovskite (LaAlO$$_3$$)$$_x$$(SrAl$$_{0.5}$$Ta$$_{0.5}$$O$$_3$$)$$_{1-x}$$ with $$xsimeq 0.3$$

Ito, Takashi; Higemoto, Wataru; Koda, Akihiro*; Nakamura, Jumpei*; Shimomura, Koichiro*

Interactions (Internet), 245(1), p.25_1 - 25_7, 2024/12

Journal Articles

Sintering behavior analysis of compacted dry recycled U$$_{0.7}$$Pu$$_{0.3}$$O$$_{2}$$ powder using master sintering curve theory

Nakamichi, Shinya; Sunaoshi, Takeo*; Hirooka, Shun; Vauchy, R.; Murakami, Tatsutoshi

Journal of Nuclear Materials, 595, p.155072_1 - 155072_11, 2024/07

Journal Articles

High temperature nanoindentation of (U,Ce)O$$_{2}$$ compounds

Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*

Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07

Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O$$_{2}$$ solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O$$_{2}$$ compounds ranging from x equals 0.1 to 0.3 at up to 800 $$^{circ}$$C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800 $$^{circ}$$C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.

Journal Articles

Quantitative analysis of microstructure evolution, stress partitioning and thermodynamics in the dynamic transformation of Fe-14Ni alloy

Li, L.*; Miyamoto, Goro*; Zhang, Y.*; Li, M.*; Morooka, Satoshi; Oikawa, Katsunari*; Tomota, Yo*; Furuhara, Tadashi*

Journal of Materials Science & Technology, 184, p.221 - 234, 2024/06

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

Journal Articles

MAAP code analysis for the in-vessel phase of Fukushima-Daiichi Nuclear Power Station Unit 1 and comparison of the results among Units 1 to 3

Sato, Ikken; Yoshikawa, Shinji; Yamashita, Takuya; Shimomura, Kenta; Cibula, M.*; Mizokami, Shinya*

Nuclear Engineering and Design, 422, p.113088_1 - 113088_24, 2024/06

Journal Articles

Development of a radioactive substance detection system integrating a Compton camera and a LiDAR camera with a hexapod robot

Sato, Yuki; Kakuto, Takeshi*; Tanaka, Takayuki*; Shimano, Hiroyuki*; Morohashi, Yuko; Hatakeyama, Tomoyoshi*; Nakajima, Junsaku; Ishiyama, Masahiro

Nuclear Instruments and Methods in Physics Research A, 1063, p.169300_1 - 169300_7, 2024/06

JAEA Reports

Development of environmental mitigation technology with novel water purification agents (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Shinshu University*

JAEA-Review 2023-053, 87 Pages, 2024/05

JAEA-Review-2023-053.pdf:4.67MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Development of environmental mitigation technology with novel water purification agents" conducted from FY2020 to FY2022. The present study aims to develop a reusable adsorbent for strontium ions with high adsorption property to contribute to the improvement of the treatment process of radioactive contaminated water generated by the Great East Japan Earthquake. As a result, reusable adsorbent materials showing excellent Sr adsorption performances were developed. The current adsorbent materials for strontium are extremely expensive and single use, so the storage and disposal of massive generation of waste have become a major problem.

JAEA Reports

Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-048, 151 Pages, 2024/05

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Development of a hybrid method for evaluating the long-term structural soundness of nuclear reactor buildings using response monitoring and damage imaging technologies" conducted in FY2022. The present study aims to develop an evaluation method necessary to obtain a perspective on the long term structural soundness of accident-damaged reactor buildings, where accessibility to work sites is extremely limited due to high radiation dose rate and high contamination. In FY2022, the second year of the three-year plan, some tests and other activities on the following research items were conducted following FY2021, based on the specific research methods and research directions clarified in FY2021.

JAEA Reports

Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; i-Lab*

JAEA-Review 2023-029, 77 Pages, 2024/05

JAEA-Review-2023-029.pdf:3.98MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2020, this report summarizes the research results of the "Challenge to advancement of debris composition and direct isotope measurement by microwave-enhanced LIBS" conducted from FY2020 to FY2022. The present study aims to increase the emission intensity of LIBS (laser-induced breakdown spectroscopy) by superimposing MW (microwave) and apply it to uranium isotope measurement. In FY2022, we improved the cooling method and reduce unnecessary functions in of the semiconductor microwave oscillator, and apply the optimized conditions obtained from simulations to the LIBS experiment for the microwave antenna gave better results.

Journal Articles

Nondestructive determination of isotopic abundance using multi-energy nuclear resonance fluorescence driven by laser Compton scattering source

Omer, M.; Shizuma, Toshiyuki*; Hajima, Ryoichi*; Koizumi, Mitsuo

Journal of Applied Physics, 135(18), p.184903_1 - 184903_10, 2024/05

Journal Articles

"Invisible" radioactive cesium atoms revealed; Pollucite inclusion in cesium-rich microparticles (CsMPs) from the Fukushima Daiichi Nuclear Power Plant

Miyazaki, Kanako*; Takehara, Masato*; Minomo, Kenta*; Horie, Kenji*; Takehara, Mami*; Yamasaki, Shinya*; Saito, Takumi*; Onuki, Toshihiko*; Takano, Masahide; Shiotsu, Hiroyuki; et al.

Journal of Hazardous Materials, 470(15), p.134104_1 - 134104_11, 2024/05

Journal Articles

Investigation of sorption behavior of $$^{137}$$Cs in a river-sea system boundary area after the Fukushima Dai-ichi Nuclear Power Plant accident

Takata, Hyoe*; Wakiyama, Yoshifumi*; Wada, Toshihiro*; Hirao, Shigekazu*; Aono, Tatsuo*; Nakanishi, Takahiro; Misono, Toshiharu; Shiribiki, Takehiko; Aoyama, Michio*

Marine Chemistry, 262, p.104384_1 - 104384_6, 2024/05

Journal Articles

Journal Articles

Development of a practical tritiated water monitor to supervise the discharge of treated water from Fukushima Daiichi Nuclear Power Plant

Sanada, Yukihisa; Oshikiri, Keisuke*; Kanno, Marina*; Abe, Tomohisa

Nuclear Instruments and Methods in Physics Research A, 1062, p.169208_1 - 169208_7, 2024/05

As part of the decommissioning work at the Fukushima Daiichi Nuclear Power Plant (FDNPP), the release of stored treated water began in 2023. In this study, we developed a practical tritium monitor to continuously monitor the concentration of tritiated water, as confirmed by batch sampling measurements at the FDNPP. The monitor is arranged with a flow cell detector comprising inexpensive plastic scintillator pellets and incorporating simultaneous measurements by three detectors, a veto detector, and lead shielding to reduce the influence of environmental $$gamma$$-rays. The system reached a detection limit of 911 Bq L-1 with a measurement time of 30 min, which is lower than the discharge standard for tritiated water of 1,500 Bq L-1. The system can also qualitatively distinguish the presence of disturbances due to interfering radionuclides other than tritium or background radiation using the $$beta$$-ray spectrum.

Journal Articles

Determination of $$^{90}$$Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation

Ouchi, Kazuki; Haraga, Tomoko; Hirose, Kazuki*; Kurosawa, Yuika*; Sato, Yoshiyuki; Shibukawa, Masami*; Saito, Shingo*

Analytica Chimica Acta, 1298, p.342399_1 - 342399_7, 2024/04

 Times Cited Count:0

Given that conventional methods of high-dose sample analysis pose substantial exposure risks and generate large amounts of secondary radioactive waste, faster procedures allowing for decreased radiation emission are highly desirable. To address this need, we developed a $$^{90}$$Sr$$^{2+}$$ quantitation technique that is based on liquid scintillation counting-coupled capillary transient isotachophoresis (ctITP) with two-point detection and relies on the rapid concentration, separation, and fractionation of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-complexed $$^{90}$$Sr$$^{2+}$$ in a single run. This method, which allows for the handling of high-dose radioactive specimens at the microliter level and is substantially faster than conventional ion-exchange protocols, was used to selectively quantify $$^{90}$$Sr$$^{2+}$$ in real high-dose waste. The successful concentration-separation in ctITP was ascribed to the inertness of the Sr-DOTA complex to dissociation.

Journal Articles

Optimizing calibration factors of plastic scintillation fibers for improved accuracy of ${it in situ}$ radiocesium concentration measurements in bottom sediments of agricultural ponds

Katengeza, E. W.*; Sanada, Yukihisa; Ochi, Kotaro; Iimoto, Takeshi*

Cogent Engineering (Internet), 11(1), p.2340203_1 - 2340203_9, 2024/04

The uncertainty of ${it in situ}$ radioactivity measurements can be influenced by the vertical distribution of the target radionuclide in the sediments. This study used 2015-2019 field measurement data from 47 ponds to evaluate the depth dependence of calibration factors of plastic scintillation fiber (PSF) and its influence on measurement uncertainty. By changing the depth of focus from 10 cm to 15-20 cm when calculating the conversion factor, the normalized mean square error of the radiocesium concentration estimated by the PSF with respect to the radiocesium concentration in core sediments sampled at the same location was found to be smaller.

Journal Articles

Rail DRAGON: Long-reach Bendable Modularized Rail Structure for Constant Observation inside PCV

Yokomura, Ryota*; Goto, Masataka*; Yoshida, Takehito*; Warisawa, Shinichi*; Hanari, Toshihide; Kawabata, Kuniaki; Fukui, Rui*

IEEE Robotics and Automation Letters (Internet), 9(4), p.3275 - 3282, 2024/04

 Times Cited Count:0

To reduce errors in the remote control of robots during decommissioning, we developed a Rail DRAGON, which enables continuous observation of the work environment. The Rail DRAGON is constructed by assembling and pushing a long rail structure inside the primary containment vessel (PCV), and then repeatedly deploying several monitoring robots on the rails to enable constant observation in a high-radiation environment. In particular, we have developed the following components of Rail DRAGON: bendable rail modules, straight rail modules, a basement unit, and monitoring robots. Concretely, this research proposes and demonstrates a method to realize an ultralong articulated structure with high portability and workability. In addition, it proposes and verifies the feasibility of a method for deploying observation equipment that can be easily deployed and replaced, while considering disposal.

Journal Articles

Comparative study of radiation mapping technologies for nuclear disaster assessment

Ochi, Kotaro; Barker, E.*; Nakama, Shigeo; Gleizes, M.*; Manach, E.*; Vincent, F.*; Sanada, Yukihisa

Journal of Disaster Research, 19(2), p.429 - 445, 2024/04

There are no clear criteria for standardizing mapping techniques for ambient dose equivalent rate (air dose rate) distributions in different countries. Thus, in this study, manborne, carborne, and airborne radiation surveys were conducted jointly by the Japan Atomic Energy Agency and the French Institute for Radiological Protection and Nuclear Safety in the vicinity of the Fukushima Daiichi Nuclear Power Station to confirm the effectiveness of each organization's monitoring methods. For example, in the manborne survey, the discrepancy between the air dose rates measured by the two institutions was observed depending on whether or not the contribution from radionuclides with different gamma-ray energies was considered when converting the count rates obtained by the detectors to air dose rates. As in this study, comparing mapping techniques among various countries and providing feedback to each other should help to improve the accuracy of zoning scenarios after nuclear accidents.

Journal Articles

Overview of development program for engineering scale extraction chromatography MA(III) recovery system

Watanabe, So; Takahatake, Yoko; Hasegawa, Kenta; Goto, Ichiro*; Miyazaki, Yasunori; Watanabe, Masayuki; Sano, Yuichi; Takeuchi, Masayuki

Mechanical Engineering Journal (Internet), 11(2), p.23-00461_1 - 23-00461_10, 2024/04

JAEA Reports

Radiation monitoring via manned helicopter around the nuclear power station in the fiscal year 2022 (Contract research)

Futemma, Akira; Sanada, Yukihisa; Nagakubo, Azusa; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; Matsunaga, Yuki*; Akutsu, Yuichiro*; Arai, Yoshinori*; et al.

JAEA-Technology 2023-027, 146 Pages, 2024/03

JAEA-Technology-2023-027.pdf:18.12MB

By the accident at Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (FDNPS), caused by tsunami triggered by the 2011 off the Pacific coast of Tohoku Earthquake, a large amount of radioactive material was released into the surrounding environment. After the accident, Airborne Radiation Monitoring (ARM) via manned helicopter has been applied as a method to quickly and extensively measure the distribution of radiation. Japan Atomic Energy Agency (JAEA) has continuously conducted ARM via manned helicopter around FDNPS. In this report, we summarize the results of the ARM around FDNPS in the fiscal year 2022, evaluate the changes of ambient dose rates and other parameters based on the comparison to the past ARM results, and discuss the causes of such changes. In order to contribute to improve the accuracy of ambient dose rate conversion, we analyzed the ARM data taking into account undulating topography, and evaluated the effect of this method. Furthermore, the effect of radon progenies in the air on the ARM was evaluated by applying the discrimination method to the measurement results.

12382 (Records 1-20 displayed on this page)